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Classical Path Equations in Molecular Collisions ~ 

G. D. Billing-" 

Derivation of the classical path equations from the time-dependent Schr6dinger 
equation is presented. Correction terms are discussed and at variational principle 
is shown to account Ibr most of the missing quantunl correlation. 

KEY WORDS:  classical path: Gaussian wave packet: quan tum correlation: 
time-dependent sellLconsistent field. 

I. I N T R O D U C T I O N  

Ill order to solve the dynamics for large, i.e., many-particle, systems, it is 
necessary to introduce approximations. In the case of nuciear dynamics we 
obviously have the possibility to think in terms of a classical mechanical 
description of the motion. However, in spite of the heavy masses of nuclei, 
there remain certain number of quantum effects which have to be dealt 
with in the proper way, namely, quantum mechanically. Quantum effects 
are, e.g., connected to nonadiabatic electronic coupling (breakdown of the 
Born-Oppenheimer appro• geometric phase effects [ 1 ], zero-point 
vibrational energy, resonances, and tunneling. It is therelbre necessary to 
formulate a theory in which the quantum aspects can be incorporated if 
deemed necessary but which is also able to take advantage of the fact that 
much of the dynamics is well described using classical mechanics. Such a 
theory (called the classical path theory) has been formulated for inelastic 
and reactive scattering over the last decades (see Ref. 2). In the present 
paper we discuss some of the lbundations of the theory. 

The theory has been used to calculate transport properties for heavy 
diatomics at high temperatures [3, 4] and energy transfer in diatomic and 
polyatomic molecules I-2]. In these calculations all the vibrational degrees of 
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freedom are usually quantized, whereas translational and rotational motion 
were treated classically. Recently the methodology has been extended also to 
reactive scattering using hyperspherical variables [ 5 ]. 

The classical path theory can be derived from the time-dependent 
Schr6dinger equation (TDSE) by assuming that the trial wavefunction can 
be written in a product form and assuming that the wavefunction remains 
gaussian in some degrees of freedom. The introduction of the Gaussian 
wavefunction gives a set of classical equations of motion for the motion of 
the center of the wavepacket. It is possible to correct for the gaussian 
approximation by introducing a correction wavefunction (@ ...... ). Further- 
more, a variational principle in the initial parameters improves the results 
obtained with the simple product-type wave function The variational 
principle yields a best trajectory which has turned out to be close to the 
one obtained using the average trajectory approach suggested many years 
ago (see, e.g., Ref. 2). If this search for the best trajectory is not introduced, 
then the ordinary or common trajectory classical path method arises. 
Below we discuss these points and theories further. 

2. T H E O R Y  

If we, for simplicity, consider a system with just two degrees of 
freedona, r and R, we can quite generally expand the wavefunction as 

~(r,  R, t ) =  y" q~,,(r) C,,( R, t) (1) 

where ~b,,(r) is a suitable basis set, e.g., the eigenstates of part of the 
hamiltonian. We shall seek a particular solution to the TDSE, where we 
assume that 

C,,(R, t) = a,,(t) X(R,  t) 

where normalization of the wavefunction requires that 

(2) 

j " dR IX(R, t) l  z = 1 (4) 

The Hamiltonian operator can generally be written as 

D(r, R) = ~r. 
h 2 ~2 

2/-I c3R 2 + l/(r' R) (5) 

la,,(t)12 = 1 (3) 
Jt 
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where 

]12 ~2 
/ t"  = 2m c3r-" ~- v(r) (6) 

and the basis functions r can be chosen to be eigenfunctions to/~o with 
eigenvalues E,,. We now use Eq. (2) when inserting Eq. (1) in the TDSE. 
For later use we also expand the potential V(R, r) as 

V(R,r)=V(R(t ) , r )+ ~. 1 @~'V (R -R( t ) )  ~ 
p=lP ! ~Rp R= ~(,) 

where R(t) is a so far unspecified reference path. 
We then get 

(7) 

(',/,,,,, ax) 
ih \ dt X( R. t) + a,,, ~-~ 

h 2 O'-X(R, t) 
=E,,,a,,,X(R, t)-2l--a"'(t)z OR'- +X(R, t) 

x[~a, , ( t ) (r162 ~. a,,(t)(R-R(t))'V(,/,', )] (8) 
,,.r=l P! 

with 

v ` ' ' )= (r O"V(R, r) 
..... " c~R" Ir  (9 )  

R =  Nil) 

Multiplication fi'om the left with X(R, t)* and integration over R gives us 

]12 . * 
ihc'L"+a"j'dRX*~=E'"a'"-9~ita"jdRX_ OR'- @2X 

+~a,,(r fcIRX*V(R,r) Xlr (I0) 
t t  

where ( ) indicate integration over r. If we instead multiply by am and sum 

over m, we obtain 

ih a,,,a,,,* " X+ = X ~  ]a,.12E,,, 2/fOR- 

+X~a,*,,a,,(r V(r. R) [r (11) 
I I I I I  
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The above set of equations is those arising from the time-dependent self- 
consistent field (TDSCF) treatlnent of the problem. We notice that no 
reference path R ( t )  appears in the equations, that the method can be 
extended to any number of degrees of freedom, and that the multidimen- 
sional problem would be reduced to a set of one-dimensional ones. 

We now deviate froln this scheme in a rather important fashion, 
namely, by introducing a reference path R(tl [ the center of a Gaussian 
wave packet ( G W P ) ]  such that 

V(R. r ) =  V(R(t), r ) + A V  (12) 

and define the expansion coefficient a,,, by the equation 

i/~,~,,,( t l = E,,,a,,,( : ) + ~ a,,(t) V',I:,}/RIt 
t l  

13) 

These equations are the so-called "classical path" equanons for a,,. Inserting 
this in Eq. (8), we obtain 

ih ~ -  = = t- ~ * : a , , , a . ( I , , , . ( R . t ) - V , . . ( R ( t ) . t ) )  X ( R . t )  (14) 
vt  21l @R z 

t H t t  

We are allowed to do so because we have introduced two functions, a.( t)  
and X ( R ,  t). instead of one. C,,(R. t). However, we have introduced a 
separability approximation in the coordinates r and R. That is. we have 
assumed 

O(r. R. t ) = X ( R ,  t) qS(r. t) (15) 

i.e., a Hartree-type wavefunction. This approximation is exact only if the 
interaction potential can be written as V(r, R ) -  V~(r) + V:(R) .  Thus the 
correlation between the two degrees of fi'eedom prevents the solution in 
terms of the simple product wavefunction. In the TDSCF treatment given 
above, the correlation is treated approximately, the r-degree of fi'eedom 
feels an average force over the R-coordinate, and the R-degree an average 
of the r-system. 

The reason t'o1" introducing the reference path R ( t )  the way it is done 
(see also below) is that we obtain classical equations of motion for R(t ). In 
the limit of large quantum numbers, masses, etc., we know that a classical 
description is correct and also, from a numerical point of view, much easier 
to solve than the quantum counterparts. In this (classical) limit we have a 
correlation, i.e., interaction, between the degrees of freedom described 
classically and correctly in the "classical sense." 
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We now apparently have a paradox-- in  order to derive the classical 
limit by introducing a G W P  we have to invoke a product-type wavefunc- 
tion which neglects the correlation (in the quantum sense). However, the 
TDSCF treatment does include the correlation, but in an average fashion. 
This must then mean that the Hartree product wave function 

gP~;wv(t', t} q:'Gwe( R, t} (16) 

becomes a more and more correct description in the classical limit. Or, in 
other words, the classical correlation is the limit the average one introduced 
m the TDSCF treatment when a G W P  is assumed. Thus the Hartree-product 
trial function and the classical limit are, in a way, interrelated. 

If we have two degrees of freedom, where one is described "'classically" 
by a G W P  and the other quantally, then the correlation included between 
the degrees of freedom is what could be called "classical." Here we denote 
by "classical" a theory where the average quantum correlation is intro- 
duced (through a GWP)  and a set of classical equations of motion is 
obtained tbr the motion of the center of the GWP. 

Thus the solution to the equation for X(R, t l can now be introduced 
in such a way that the classical path equations arise as the limit of the solu- 
tion. But before this is done we use the above equations to obtain the best 
possible values with the product-type wavefunction lbl" a simple test system 
also investigated previously. 

Initially X(R, t) is set equal to a GWP, 

2 Re A ( - t ) )  ~ 4 
X( R, - t) = rch 

(i ) xexp  ~ ( A ( - t ) ( R - R ( - t ) ) ' - + P ( - t ) ( R - R ( - t ) ) )  (17) 

at - t .  A(t) is the width parameter, which is parameterized at the turning 
point tbr the trajectory R(t) such that, at the turning point, where P(0) = 0, 
we have Im A(0)=cq, and Re A ( 0 ) = 0  (see Ref. 6). R ( - t )  is set to a large 
value where the interaction is vanishing. The G W P  is an exact solution of 
Eq. (8) if the interaction potential is at most quadratic in R. This is of 
course the case initially, where the interaction potential vanishes. Otherwise 
the G W P  trial function will be an approximation. 

If the G W P  approximation at all times is not introduced, then the 
only approximation is the one connected to the product-type wavefunction 

assumed above. 
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In order to determine the transition probability from an initial state I 
to a final state F, we set a,,( - t) = J,,r and project the wavepacket X ( R ,  - t) 
on incoming plane waves 

where 

1 _  
X ( R ,  - t ) =--~_~ )~ c,,i" exp( - ik , ,R)  

, /  -;, 
(18) 

h ~-k z 
" - E - E , ,  (19) 

2p 

Likewise with the scattered wavefunction--it  is expanded on outgoing 
waves 

1 
X ( R ,  t) ~ c ,, e xp ( i k , ,R )  (20) 

Thus the transition probability is given as 

k,.. [c';)" [ ~ 
P , _ , . - - - ~  lar(t)l z ic9,1 _~ (21) 

This projection on plane waves to get the incoming and outgoing fluxes is the 
standard way of transforming from a time-dependent to a time-independent 
picture. If this projection is made, the probabilities are independent of the 
position in momentum space of" the wavepacket, i.e., independent of 
P ( -  t ) =  P ,  and of the width parameter %. A single wavepacket, in prin- 
ciple, covers an infinite energy range. However, when the product form of 
the trial function is assumed throughout the collision, then the probabilities 
will in general not be independent of the two parameters. This led us to 
suggest the following variational approach: the best initial momentum P~* 
is the one where the probabilities obtained from Eq. (21) are independent 
of the other parameter %. Thus P,* is defined as 

O P t - - F ( % ,  P , )  = 0  (22) 
00~ o I ' .  = I'q} 

If the product-type wavefunction is assumed, then the correlation between 
the two modes is not accounted for properly, i.e., quantally. It is included 
only in an average "classical" fashion. As mentioned the exact probabilities 
are independent of the two parameters above. Thus the degree of 
dependence we obtain with the product trial function is a measure of the 
amount of correlation between the two degrees of freedom. 
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Table I shows that the product-type wavefunction combined with a 
search for the optimum momentum gives results in very good agreement 
with the exact quantum results. We notice that the difference is small, typi- 
cally less than 10% over as much as 20 orders of magnitude for various 
mass parameters, etc. Any difference between the exact quantum mechani- 
cal numbers and those obtained with a product-type wavefunction is, as 
mentioned, due to the neglect of quantum correlation. However, we see 
that the introduction of the variational approach almost fully corrects fox" 

Table I. Compar ison  Between Variational Ehrenfest and Exact Quan tum Transition 
Probabilities Ibr an Atom Colliding with a Morse Oscilhitor with an Exponential Interaction 

F'otential (see Relg. 6 and 7 lbr Details): System I Is a Heavy and System 2 a Light Mass 
Oscilhltor" 

Energy Transit ion Variational Exact Deviation ( ,  i, ) 

Systonl [ 

IO.(J 0 I 3 . 7 1 1 - 5 )  

10.0 o 2 9.781 - II ) 

10.o o 3 7 . o 7 1 - 1 8 )  

10.0 1 2 I .I)61 - 5 ) 
I [).0 I 3 1.69( - 12 ) 
I 0 .0  I 4 1 .361 -22  

10.0 2 3 6 .381-7)  
10.0 2 4 1.11)61 - 16 
10.(I 3 4 6.62( 10 

20.0 0 I 3.82( - 3) 

20.0 0 2 4 .351-6)  
20.0 0 3 1.90( - 9 ) 
20.0 0 4 3 .2 ' - ) ( -13 )  

20.1) 1 2 4.771 - 3 )  
20.() 3 4 2 .771-3)  
20.0 2 3 3.98( - 3 ) 

20.0 2 4 2 . 6 6 l - 6 )  
20.0 I -4 1.391 - 9 ) 

20.0 1 3 4.641 - 6) 

System 2 

5.0 0 I 1 . 5 7 1 - 5 )  

9.0 1) I 1.831 - 3 )  

9.0 I 2 1.251-3) 
13.0 0 - I  1.131 - 2 )  

13.0 I -'~ 1.53( - 2 ) 
13.0 I 3 4 .811-5)  

3 . 8 8 ( - 5 )  

1.06( - 10 ) 

7 . 2 1 ( - 1 8 )  

1.09( - 5 ) 

1.84( - 12 ) 
2.20( - 22 ) 
6.76{ - 7 )  

1 .211-161 

7.15, - 10) 

3.88, - 3 )  
4.61 - 6 )  
2.33 - 9 )  
35)7 - 131 
4.72 - 3 )  
2.90 - 3 )  
4.13 - 3 )  
3.01 - 6 i  
1.34 - 9 1  
4.91 - 6 i  

4.5 
7.8 
1.8 
2.9 
8.3 

47 
5.8 

13 
7.5 
1.6 
5.9 

19 
19 

1.0 
4.5 
3.7 

12 
3.7 
5.5 

1.59[ - 5 ) 1.3 
1 .87( -3)  2.2 
1.271-3) 1.6 
1.191-2} 5.2 
1 .62( -2)  5.6 
5.94( - 5 ) 20 

" The energy is given in units of ~/uu. where co is the oscilhitor frequency. Tile numbers  in 

parentheses give the p o w e r  of 10, i.e., 3 .71 ( -51=3 .71  • 10 5. 
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Table  II. 

Billing 

T r a n s i t i o n  Probab i l i t i e s  O b t a i n e d  Ibr Sys tem I wi th  Chiss ical  Initial  C o n d i t i o n s  

I See Text  ) 

E n e r g y  T r a n s i t i o n  P r o b a b i l i t y  G e o m e t r i c  m e a n  Exact  

I (i.(i 1 4 3.54( - 15 ) 3.90( - 20 

I 0.0 4 1 4.30( - 25 ) 3.9(I( - 20 

20.(11 0 I 4.58( - 31 3.66( - 3 ) 

20,0 I 0 2 , 9 3 1 - 3 i  3.66( 31 

20.0 3 4 3,86( - 3 i 2.63l - 3 I 

211.0 4 3 1 . 7 9 1 - 3 1  2 . 6 3 1 - 3 1  

2,2(1( -221  
2.201 - 2 2 1  

3,88( - 3 1  

3.88( 31 

2.901 - 3 1  

2.9(11 -3) 

it. The search for the optimum lnomentum colnes from imposing quantum 
boundary conditions on the system. A natural but wrong idea would be to 
impose classical boundary conditions. This thought would be natural due 
to the I;act that classical equations of motion are integrated. Classical 
boundary conditions would be to let the initial momentum be given by 

- E- E, (23) 
2IL 

where I is the initial state of  the oscillator. We have shown for a few trans- 
itions the result of  such a calculation in Table II. We notice that even the 
geometric mean value ~ is off by orders of magnitude for the weak 

Table  III. C o m p a r i s o n  o f  the " 'Exac t"  a n d  G W P  + C o r r e c t i o n  T e r m  O b t a i n e d  with the 

Variational Search for tl3e Best Moluentunl 

F'robability 

Sysl.enl E n e r g y  T r a n s i t i o n  " 'Exac t"  G W  P m, = 3 m, = 4 tit, = 5 

I I0.0 0 I 3.71(-5) 3.73(-5) 3.71(-51 3.711-5) 3.721-51 

I 10.0 3 4 6.62(-10) 6.96(-I0) 6.591-10j 6.64[-10) 6.84(-101 

2 9.0 0 I 1.83( - 3 )  1 . 8 1 ( - 3 )  1 . 8 1 1 - 3 )  1 . 8 3 ( - 3 )  1 . 8 6 ( - 3 )  

2 13.0 I 3 4.81 ( - 5 ) 4.541 - 5 ) 4.54( - 5 ) 4.691 - 5 ) 4.79( - 5 ) 

" t i e  is the n l a x i n m m  value  o f  n in Eq. ( 30k  i.e.. the n u m b e r  o f  c o r r e c t i o n  t e rms  is m , + l  

I , e  = 3 is the smal les t  nunabe r  g iv ing  a n y  c o r r e c t i o n  to tile G W P I .  
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Fig .  1. T h e  w u x ' c f u n c t i o n  r-~'( R. t)12 as  a f u o c t i o o  o f  

t i m e  lb r  s y s t e m  I. T h e  e n e r g y  is E = 20 u n d  the  M o r s e  

o s c i l h t t o r  in i t iu l ly  in the  n = 0 s ta te .  (a )  Ini t ial  G a u s s i m l  
d i s t r i b u t i o n  ( t = 0 ). I b ) T h e  d i s t r i b u t i o n  a t  the  t u r n i n g  

p o i n t  tb r  the  w a v c p a c k e t  ut T = 7r( r = 10 ~4s I. (c I T h e  

finul d i s t r i b u t i o n  a t  t = 14r. 
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transitions compared to those obtained if we first introduce a search for the 
opt imum momentum.  But what is worse is that there is no theoretical 
justification for this choice of the classical momentum (although it is 
plausible). For high energies, of course, we expect P,* not to deviate much 
from either of the two possible classical values of Po (for the forward and 
reverse transitions). Traditionally the search for an opt imum momentuna 
has not been introduced in the classical path equations (discussed below). 
But is is been known that the introduction of an average initial velocity 
does improve the agreement with exact calculations [2] .  

The variational approach to obtain Pt* gives probabilities for which 
detailed balance is nearly fulfilled and the introduction of a kinematic 
factor (see Ret: 7)justifies the geometric mean of the forward and reverse 
transitions. The quantum derivation gives P,, strictly as a parameter  and it 
is important  to notice that this is the case also if we introduce the classical 
path limit by assuming a Gaussian trial wave function. That  is, when deriving 
the theory we are thinking in quantum rather than classical mechanical 
terms. 

Figure 1 shows the wavefunction IX(R, t)] 2 as a function of time tbr 
system 1. We notice that it remains approximately Gaussian during the 
entire collision. This leads to the suggestion (as discussed above) to replace 
it by a Gaussian wavefunction and introduce correction terms to the 
Gaussian. 

3. T H E  CLASSICAL P A T H  L I M I T  

In order to obtain the classical path equations as the limit, we have 
suggested introducing the trial wavefunction as 

X(R,  t )=qS(R,  t) ~. e , , ( t ) ( R - R ( t ) ) "  
I t  = gl  

(24) 

where qS(R, t) is a Gaussian wavepacket and the last t:actor is the correc- 
tion wavefunction q5 ..... . mentioned in Section 1. If one inserts this expres- 
sion in the time-dependent Schr6dinger equation, Eq. (8), we can get a 
hierarchy of equations by equating terms with the same power of 
( R - R ( t ) ) ~ .  In this manner  we can have the TDSE fulfilled to all powers 
in R - R(t ). R(t) is a reference path which is obtained by solving the classi- 
cal equations of motion in an effective Ehrenfest potential; i.e., we have 

l~( t) - PR( t) (25 
It 
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P , d t ) -  -~--~ <4,1H',"'(r, R)I,/,> I,, =,~,,, (26) 

where the brackets indicate integration over the quantum coordinate r. 
Furthermore, a TDSE is obtained for the r system: 

a4, 
ih ~ - =  (fi,)+ V(r, R(t)))i /J (27) 

which gives Eq. (13) if the wavefunction is expanded in.the basis functions 
~b,(r). Thus the above equations are the so-called classical path equations 
where a path R(t )  drives the quantum system and where the two systems 
are coupled self-consistently to each other through an Ehrenfest potential. 
Aside from the equations above we also obtain the tbllowing equations for 
the width parameter A(t ) ,  the phase-factor T(t), and the correction terms 
e,,(t) [7]: 

1 2A( t )  2 
- - m ( t )  =-~ M 2 + - -  (28) 

_ II 

7(t) = P( t )  2 + ihA( t )  (29) 
/ t l t 

2n ihA( t )  e , ( t ) -  h2 " ~ M,, k(t~ 
ihg , , -  / ~  ~ p ( n + l ) ( n + 2 ) e , , + 2 +  ~..= ( n - k ) [  e~(30) 

where 

M , , = ~  * V 'p' (31) a,,,a,, ,,,,, 
I I I l l  

and e,, initially is 6,,~. 
If we use these equations and the above mentioned variational 

approach, it is possible to discuss various corrections to the simple classical 
path theory, which involves just Eqs. (25)-(27). On is a correction which 
searches tbr the optimal momentum Po (initial momentum) of the reference 
path (as done above). This is done by projecting the wavefunction on 
incoming and outgoing plane waves times an internal state function for the 
r system. This projection is the usual one used in time-dependent scattering 
and can be carried out as either a space-momentum transform or a 
time-energy transform so as to obtain the scattering S matrix in an energy 
range covered by a given initial wavepacket. In quantum mechanics these 
S-matrix elements are independent of where the initial wavepacket is posi- 
tioned in momentum space and also independent of the width of the 
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wavepacket. However, if the dynamics is not solved exactly as is the case 
in the classical path theory, then there will be a dependence on these two 
initial "parameters." We have therelbre previously suggested a procedure 
called the variational Ehrenfest procedure (o1" classical path method). In 
this method the optimal initial momentum P~, is defined as that momentum 
which makes the results independent of the width parameter. This defini- 
tion of the best momentum Po is very close to the so-called symmetrized 
Ehrenfest method suggested many years ago by the author [2, 8]. Aside 
from this correction to the classical path equations, the so-called higher- 
order correction terms % can be calculated and used to improve the results 
[73. 

We note that in the limit of many correction terms, we should 
approach the exact solution [ to  Eq. (14)]. Table III shows that, with just 
a few correction terms ~,,, we do obtain almost the "exact" values obtained 
with the full wavefunction X(R,  t). The advantage of the G W P  proce- 
dure +correct ion is that the equations are easier to solve and that the 
classical equations of mot ion- - the  classical picture--are obtained as the 
limit of no correction. We note that the G W P  approximation already gives 
good results and the inclusion of just a few correction terms is sufficient for 
obtaining the "exact" results, where by "exact," we mean results obtained 
by integrating Eq. (14). 

4. DISCUSSION 

Although we have fotmd a solution to all orders in JR ,  a solution 
which in the limit has the classical path equations, we still had to introduce 
the approximation, Eq. (2), in order to derive the theory. We now note 
that the solution is a function of the parameters P,,, the initial momentum, 
and %, the width parameter (the initial width or, more conveniently the 
width at the turning point I- We then postulated that the general expansion 
coefficients C,,(R, t) could be written as 

lim C,,(R, t ) = a , ( t )  X(R,  t P~*, ~(~*) (32) 

Since the correct transition probability is obtained as 

k/  lim 1( 1 / x / ~ )  ~ dR exp(ikR ) C/( R, t )] 2 
Pi 

. . . .  I ~ ; -  I -~ 
(33) 

independent of the parameters Po and %, we have defined the values of P~* 
and c~* such that 
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(a) detailed balance is fulfilled, P,(P,,* ao)* -- PfdPo*czo* ), and 

( b ) r3P, (0%, P~* )/3~,, = 0, 

i.e., it is possible to find a value of P~ for which the result is independent 
of cq, and where detailed balance is fulfilled. We note that the particular 
solution to the TDSE involves the solution of equations for the two degrees 
of freedom r and R, which are coupled but only in the average sense. Thus 
the number of equations is much smaller than and much easier to solve 
than the exact set of equations. Furthermore, there are several levels, from 
no correction to corrections involving higher-order terms and the search 
lbr optimal parameters. 

In the TDSCF treatment of dynamical processes, averaging over all 
other degrees of freedom is introduced, when the equations of motion for 
a particular degree of fi'eedom are derived. Thus this treatment includes the 
correlation only in some average sense. In the present semiclassical theory 
the idea is that a certain number (Q) of degrees of freedom--strongly 
coupled--are boxed together and quantum correlation is included among 
them. The remaining M -  Q degrees of freedom, where M = 3 N -  5 (N is 
the number of atoms and 5 constraints comes from fixing the center of 
mass and conservation of total angular momentum and its projection), are 
treated "classically." Correlation is included in the average ("classical") 
sense both between the Q set and the M - Q  set and among the M - Q  
degrees of freedom themselves. Present computer facilities set the limit for 
Q to about 3-4. However, large systems may conveniently be treated 
within the second quantization (SQ) degrees of freedom [2].  In the SQ 
approach the Schr6dinger equation is solved in operator space and the 
approach is convenient for an approximate quantum description of '~rigid" 
parts of the system as, for example, solids (bosons) or electron-hole pair 

excitation (fermions). 
The quantum corrections to the classical path theory described above 

are as far as one can go in the improvement of a treatment based upon a 
single-configuration product trial function. It is well-known that the single 
configuration approach breaks down in a number of cases studied recently. 
They are, for example, the tunneling of a particle coupled to a heat bath 
[9, 10] and nonadiabatic processes [11, 12]. In such cases the obvious 
improvement is to introduce more than one configuration, i.e., several 
terms in Eq. (15). If the trial function in R-space is still a GWP, then such 
a theory will generate more than one "classical" trajectory. But before this 
is done we have demonstrated that imposing quantum boundary condi- 
tions on the single-configuration wavefunction does in fact lead to a drastic 

improvement of the results. 
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